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We report measurements of the drift mobility of Oz~ ions in supercritical neon gas at high
density at a temperature T = 45.03 K, 0.6 K above the critical temperature. Our measurements
span a very large density range, up to values comparable with those of a liquid [(15-240)x103°
cm ™3], and cover the transition region from the kinetic to the hydrodynamic regime. We show
that the classical hydrodynamic Stokes formula for the drag on a sphere moving through a fluid
describes accurately enough the ionic mobility as a function of the gas density, if it is modified to
take into account the spatial dependence of the gas density and viscosity around the ion due to

electrostriction.

PACS number(s): 51.50.+v, 52.25.Fi

I. INTRODUCTION

Understanding the motion of ions in gases under the in-
fluence of an electric field is of great importance in many
areas of physics. In low-density gases the ionic mobility is
primarily determined by the cross section for momentum
transfer. Within the frame of the Boltzmann formalism,
information on the ion—neutral-species interaction poten-
tial can be gathered from mobility data [1-3].

On the other side, thermal ions were successfully
used as a probe to investigate the microscopic behavior
and structure of dense fluids, such as superfluid helium
[4-17], cryogenic liquids [18-20], and liquid hydrocarbons
[21,22], within the frame of reference of continuum me-
chanics.

The intermediate region between the low-density gas
and the high-density liquid is important to the purpose
of studying the transition from the kinetic regime to the
hydrodynamic one. In spite of the relevance of this sub-
ject there are few systematic studies to be found in the
literature [21,23,24]. The reason might be that there are
both experimental difficulties as well as theoretical ones
due to the lack of a well assessed theory.

The typical experiments in this field are carried out by
observing the drift mobility of ions generated by ionizing
the gas with a short x-ray pulse [23]. From a technical
point of view, this technique of ion generation adds to
the complexity of the experimental setup. On the other
hand, from a conceptual point of view, this technique
restricts the research field to ions in their parent gases,
Ar™ in Ar, for instance. This fact has the drawback that
the probe used, the ion, is different as the gas under study
is changed.

An ion common to all gases, however, can be easily
generated in experiments based on the pulsed photoe-
mission technique by exploiting the process of resonant
attachment of electrons to Oy molecules, yielding Oz~
[25-29]. O, impurities are practically found in every
gas. For instance, in the best commercially available neon
gas, the amount of O, is approximately 50 ppm. This
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amount is huge if the electron mobility is to be measured
in high-density gases, where an O impurity concentra-
tion in the tenths of ppb range is required in order to
have free electrons drifting through the whole space be-
tween the electrodes. But it is large enough to produce
a detectable amount of ions, whose drift motion can be
easily observed with suitable electronics.

Advantages and drawbacks of this technique are im-
mediately evident: (i) the same ionic species is used
throughout, so that specific features of the particular gas
under study can be brought into evidence; (ii) different
types of negative ions can be studied by suitably reduc-
ing the O, impurity concentration down to some tenths
of ppb when no detectable signal from O»~ is observed
[27], and introducing in the chamber a suitable concen-
tration (some tens of ppm) of an electron-attaching gas;
(iii) the very simple and reliable pulsed photoemission
technique can be used; (iv) the ionic concentration is low
enough to neglect ion-ion interaction; (v) at too small
gas densities the number of ions produced js small and
they cannot be easily detected.

O2~ mobility measurements in high-density He gas at
77.6 K were already carried out in the past, though in
an unsystematic way [30]. These measurements brought
into evidence two unexpected facts: (i) a systematic in-
crease with the gas density of the reduced mobility at
zero electric field; (ii) a strong disagreement of the re-
duced mobility value extrapolated down at zero density
with the prediction of the Langevin theory [31,32]. This
disagreement could not be overcome even by assuming
the presence of heavier, clustered negative ions, such as
04~ [30].

These two points remained unexplained because of the
lack of a suitable theory and, maybe, for the lack of a
real interest in this subject [33].

In the past few years, in our laboratory, we have con-
structed and used an apparatus based on the pulsed pho-
toemission technique in order to study the electronic mo-
bility and resonant attachment to Oz in high-density
neon gas [34-36,27]. In the cell of our apparatus, at
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fairly low temperatures, a neon gas density twice as large
as the density of the liquid at the critical point can be
easily attained. Owing to this opportunity, we have de-
cided to carry out systematic measurements of O~ mo-
bility in high-density neon gas. In this paper we report
the results obtained at 7' =45.03 K in the density range
(15 < N < 235) x 1029cm 3.

II. EXPERIMENTAL DETAILS

We have used the same pulsed photoemission technique
and apparatus exploited for the measurements of electron
drift mobility in high-density neon gas. The apparatus
has been thoroughly described elsewhere [34-38]. We
recall here only its most important features.

A. General details

Two parallel-plate circular electrodes are contained in-
side a brass cell that can withstand pressure up to 15
MPa. The cell is mounted on the cold head of a cry-
ocooler (CTI, model 21) inside a homemade cryostat.
The two electrodes are made of gold-plated brass, and
are separated by a distance d =~ 0.4cm. Their radius is
R, =~ 3 cm, so that their aspect ratio R./d =~ 7.5 is large
enough to comply with the requirement of ideal geometry
[(Re/d)min = 2.5] [37]. In this situation the integration
of the current induced by a bunch of ions moving through
the drift space yields a linear voltage wave form.

The anode is connected to a passive RC network in
order to integrate the ionic current. Integration of the
current is necessary in order to improve the signal-to-
noise ratio in our experimental conditions [39]. The time
constant of the circuit is RC = 5s. Such a large value
is required because the ionic transit time in our experi-
mental conditions can be as large as 1 s.

The second electrode acts as a photocathode. Produc-
tion of photoelectrons is accomplished by irradiating it
with a 4 ps short UV pulse of a Xe flashlamp (EG&G,
model FX108AU). Approximately 2 x 10* to 2 x 10°
electrons per pulse are extracted and injected into the
drift space, depending on the gas density. The electrons
attach readily to O, impurities generating slow O,
ions drifting toward the anode under the influence of the
applied electric field.

The amount of O molecular impurities is fairly low.
The neon gas used has a nominal impurity content of
50 ppm. To remove impurities like water vapor, car-
bon dioxide, residual hydrocarbons, and part of Oa,
the gas is passed through an activated charcoal trap im-
mersed in liquid nitrogen. An upper limit to the residual
O, content can be estimated as follows. Since the O,
triple point is much higher than our working temperature
(T = 45K), Os solidifies when its partial pressure equals
the sublimation pressure at that temperature [40] and the
photocathode efficiency should decrease because of solid
O, deposition. This fact was observed during electron-
mobility measurements in neon gas carried out with the
same apparatus. As we did not detect any loss of photo-
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cathode efficiency even at the largest neon gas pressures
during the present experiment, we conclude that the O,
partial pressure was lower than that corresponding to an
O, impurity concentration of 10 ppm.

Since the number of electrons injected, and hence the
number of Oz~ ions produced, is small, the electrical
signals are also fairly small and electrical noise must be
carefully minimized. The major source of noise is due
to mechanical vibrations of the electrode assembly in-
duced by the reciprocating displacer of the cryocooler
head. Especially at large applied fields the ionic signal
might be completely obscured by noise. Therefore, the
cell and the amplifier were mechanically decoupled from
the cryocooler head by means of four copper cantilevers.
By so doing, a very good noise reduction was achieved,
while keeping a satisfactory thermal contact with the cry-
ocooler head [36].

B. Signal wave form analysis

The current induced by the drifting charges is inte-
grated by means of a passive RC network. The inte-
grator output is linearly amplified by a factor 100 and is
recorded by a digital storage oscilloscope (Hitachi, model
VC 6041). The digitized wave form is then sent to a per-
sonal computer (Apple Macintosh IICi) over a general-
purpose interface bus (GPIB) and numerically analyzed.
The analysis of the signal wave form allows the determi-
nation of the drift parameters, first of all the ionic drift
time.

Provided that the electronic transit time 7. is much
smaller than the ionic one 7; as usual, it is easy to show
that the ionic wave form is given by [39]

’Ui(t) = —vp (I — P(A’ I)e—t/RC _ Q(A,I)C_At/fi)

for0<t<m. (1)

In Eq. (1) vr = (eno)/C is the maximum attainable
signal amplitude, (eng) is the total charge photoinjected
into the drift space, and C is the total integrating ca-
pacitance (in our case C = 40 pF). I = (RC)/7; is the
ratio of the integrator time constant to the ionic drift
time, A = vaTe is the attachment efficiency, and v, is
the electron attachment rate. P and @ are functions of
A and I and are given by

e+ (A2 -1

= AT+ D) 2)
and
Ie—4
Q= @I+ (3)

For t > 7; the signal shows the usual exponential decay
vi(t) = vi(1;)e” ¢TI/ RC, (4)

The signal wave form may look very different according
to the values of the parameters A and I. In the present
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experiment, for neon gas densities NV > 50 x 102° cm~3,
the attachment rate v4 is fairly large and 4 > 1. In
this case the ions are generated in close proximity of the
cathode. Since I > 1, as usual, also Al > 1 and Eq.
(1) reduces to

t
’Ui(t) = —vT (;) for 0 <t S Ti (5)
and Eq. (4) becomes
vi(t) = —vpe” "T/RC fort > 7, (6)

In this situation the transit time of the ion swarm can
be accurately determined from an extrapolation of the
linearly changing voltage wave form to find the start and
end points of the ionic motion in the drift space. A typ-
ical experimentally recorded signal is shown in Fig. 1.

For lower densities, condition A > 1 may not be sat-
isfied and the drift parameters must be determined by
the analysis of the wave form given by Eq. (1). A typical
signal recorded in these conditions is shown in Fig. 2.

In principle, standard nonlinear least-squares-fit tech-
niques could be used to determine the three parameters
A, I, and vr. In practice, since each wave form con-
sists of 4000 points and since several hundreds of wave
forms are collected during each experimental run, this
solution is unsuitable because it is much too time con-
suming. Therefore, we have adopted a different method,
similar to that known as “three-points method” devised
for the analysis of the electronic wave form and described
elsewhere [39]. Summarizing, three points {[(¢;,v; =
vi(t;)],3 = 1,2,3} are chosen from the signal and the
parameters A, I, and vt are adjusted so as to fit the
analytical wave form to them.

Letting B = (v;/v3) be the ratio of the voltage values
of the experimental signal, we define the functions

G = I(l — B) — (e_tl/Rc _ Be—ts/RC)
x[P(A,I) + Q(A, I)] (7)

and
D = (vz)c — vz (8)

where (vz).is the value of v;(t) calculated for ¢t = t,

V; (50 mV/div)

: v
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t (20 ms/div)

FIG. 1. Ionic signal wave form at high density when the
attachment rate is fairly large, A > 1. No electronic contri-
bution is present. Experimental parameters: E = 583 V/cm,
75 =111.0 ms, N = 231.9 x 10%° cm™3.

V; (200 mV/div)

I Y N T T N T SO B |
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FIG. 2. Signal wave form at smaller density when the at-
tachment rate is not very large, i.e., A ~ 1. The signal jump
at t = 0 is the contribution due to the fast electrons. The
following slow part of the signal is due to the ions. The an-
alytical wave form calculated according to Eq. (1) with pa-
rameters determined with the three-points method described
in the text is also shown. Experimental parameters: E =
1554 V/cm, 7; = 11.60 ms, N = 39.36 x 10*° cm™3.

according to Eq. (1), with the auxiliary equation

YT = T _ Pe-t./RC _ Qe—Ati/™" (9)

If the true values of A, I, and vr were known, then
both G = 0 and D = 0. So, we are facing a double
root-finding problem which can be solved iteratively us-
ing standard algorithms [41]. Only an initial value for
7; has to be guessed in order to start the iteration, since
the initial value of A is determined by the relation

A=, (R% ; j}';((g))) (10)

where

v'4(0) = (d”f))tzo (11)

as easily derived from Eq. (1). Iteration is stopped
when both G and D are simultaneously zeroed within
a given accuracy. Normally, the convergence criterion is
|D| < 2 x 107 %v3. At the end of the iteration 7; is cal-
culated from the relation 7; = RC/I. The agreement
between the experimental signal and the one calculated
according to Eq. (1) with the parameters A, I, and vt
determined with this iterative procedure is very good, as
shown in Fig. 2.

C. Experimental accuracy

The ionic mobility is determined from the measured
transit time as

d2

B= ’TiV (12)

where d is the drift distance and V is the potential dif-
ference between the electrodes. The relative accuracy of
the mobility determination can be then calculated ac-
cording to the usual error propagation formulas.

The drift distance d = 0.386 cm is known with an
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accuracy |Ad/d| = 2%. |AV/V] is negligible since the
dc cell resistance (R, ~ 10'® Q) is much larger than the
amplifier input resistance (R = 10! Q).

The determination of the accuracy of the drift time
measurements is more difficult. When the ionic signal is
a straight line, it can be shown [42] that

AT,'

Ti

3
~ 2 (13)

where S is the signal-to-noise ratio. In our experimen-
tal conditions S > 100. So, we get |AT;/7:| < 3%.
If the ionic signal has to be analyzed by means of the
three-points method, there is no simple way to deter-
mine |A7;/7;|. One empirical way to estimate it is to re-
peatedly analyze the same signal by choosing at random
the three points. By so doing, we obtained a dispersion
around the mean value of approximately 2%.

Since the three-ponts method is very sensitive to the
signal shape, the presence of electrical noise might influ-
ence the parameter determination. This effect is difficult
to predict but it can be estimated to influence to less
than 5% the drift time measurements under the signal-
to-noise ratio values of our experiment. Thus, the over-
all accuracy of our measurements can be estimated to be
|Ap/p| < 7%.

One more interesting quantity in our measurements is
the so called density-normalized mobility, uN, where N
is the gas density. This is calculated from the experimen-
tal temperature and pressure data according to the state
equation of McCarty and Stewart [43]. Pressure is read
by means of a digital gauge (Ashcroft, model Digigauge
7780) with an accuracy |AP/P| < 0.5% and temper-
ature is measured using an ac ratio-transformer bridge
and a Pt sensor. The cell temperature is stabilized within
0.01 K. Thus, the accuracy of the density determination
at 45 K turns out to be |AN/N| < 1%.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

In Fig. 3 we show the measured O~ mobility at
T = 45 K as a function of the density-reduced electric-

u (1072 em?V-1s7)

E/N (mTd)

FIG. 3. Ionic mobility as a function of the density-reduced
electric field E/N(1 Td = 107"V cm~2) for some of the
investigated gas densities at T = 45.03 K. The densities
are (from top to bottom) N = (15.69, 26.30, 39.36, 63.54,
98.77, 234.5) x 10%° cm 3.
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FIG. 4. Experimental zero-field mobility po as a function
of the gas density. N. = 144.3 x 10%° cm™3is the critical
density of neon.

field (E/N) for some of the investigated neon gas den-
sities. For all of the densities but the lowest one the
ionic mobility is field independent over more than one or-
der of magnitude in (E/N). This means that the mean
ion energy is essentially thermal and that the measure-
ments are carried out in the low electric-field limit. The
weak electric-field dependence of the mobility at the low-
est density is probably an instrumental effect due to the
difficulty of analyzing the signal wave form when the ionic
contribution to it is too small, i.e., when A4 < 1.

In Fig. 4 we report the mobility values extrapolated to
zero electric field yo as a function of the gas density NN.
In Fig. 5 we show the zero-field density-normalized mo-
bility poN as a function of N. The behavior of poV is
rather complex, but is very similar to that of the mo-
bility of cations Art, N,¥, and CH," in their par-
ent gases [23]. We can distinguish three density re-
gions. There is a first region, from N = 0 up to ap-
proximately N =(120-130) x10%2°cm~3, where uoN is
nearly constant. In the second region, for (130 < N <
200) x 102°cm™3, poN increases linearly with N. Fi-
nally, for N > 200 x 102°cm™3 poN saturates to a
constant value again.

In the first density region poN is nearly independent
of the gas density, as would be predicted by the classical
kinetic theory if binary scattering controls ion transport
[31]. poN can be extrapolated down to zero density
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FIG. 5. Experimental zero-field density-normalized mobil-
ity poN as a function of the gas density. The critical density
of neon, N, is indicated by an arrow.



with fairly good confidence because of its weak density
dependence, and also because measurements carried out
at room temperature at densities as low as N ~ 0.2 x
102°cm—2 did not show any “strange” behavior of the
mobility at small density [42]. We obtain

(#oN)o = (8.2 £ 0.4) x 10*° (V cm s)7? (14)

which should correspond to the density-normalized mo-
bility value predicted by the kinetic theory. In fact, if
binary scattering controls ion transport, the solution of
the Boltzmann equation yields a constant uoN, inde-
pendent of N. Moreover, since the ions are in thermal
equilibrium with the atoms of the host gas, their thermal
energy is quite low (kT = 3.9x 1073 eV at T = 45 K).
This means that the scattering is governed by the po-
larization potential due to the interaction of the ionic
charge and the dipole moment induced by it on the neon
atom. Therefore, in this low-density limit puo/N should
approach the so-called polarization limit given by [23]

4.81 x 1074

(#paN) = @M,

(15)

where o is the atomic polarizability of neon, expressed
in units of cm®, and M, is the O;-Ne reduced mass,
in g/molecule. For Ne a = 0.3946 x 1072% cm® and
M, = 2.055 x 10723 g [44] and we obtain

(Bpo1N) >~ 16.89 x 10 (V cm s) 1.

So, at low density, even if uoN is quite independent
of N,as predicted by the kinetic theory, nonetheless its
value is smaller than the predicted one by nearly a fac-
tor 2. Such a discrepancy has been also found in many
other systems [23,30]. It has been argued that ions could
be clustered [23]. In this case, M, in Eq. (15) should
be taken to be approximately equal to the atomic mass
of neon and we would obtain

ool N)cr >~ 13.23 x 10*° (V cm s)7?
P

where CI means clustered ions. This value is again much
greater than experimentally observed. The problem is
that classical kinetic theory can be used if the ionic mean
free path is much larger than the atomic diameter in
order that the O™ ion undergoes collisions only with
one atom at a time. A rough estimate of the ion mean
free path, ¢, can be obtained using the Drude result for
the mobility [45]
M, V.1

L= - (16)

where M, is the reduced mass of the O3 - Ne system and
¥, is a mean relative velocity, for instance,

1/2
5, = (3§JBT) . (17)

Here kg is the Boltzmann constant. For N = 15.7 x
102°cm™3 and T = 45 K we measured u = 5.13 x 1072
cm?/Vs and we obtain £ ~ 2A. If the ion were com-
pletely clustered, we would obtain £ ~ 2.5 A. These mean

48 LOW-TEMPERAURE O, MOBILITY IN HIGH-DENSITY NEON GAS

1383

free path values are to be compared with the Lennard-
Jones diameter of neon opy = 2.76 A [44] or with the
027 -Ne hard-sphere diameter which can estimated to
be 0p,- = 3.2A [42,44], and with the average inter-
atomic spacing d ~ (N)~!/3 = 8.6 A. It is evident that
in our experiment, even at the lowest densities, the con-
ditions for the use of classical kinetic theory are not ful-
filled. Also the Enskog theory for transport phenomena
in dense gases, which takes into account the finite size
of molecules, is in disagreement with our measurements,
since it predicts a monotonic, though small, decrease of
the density-normalized mobility with increasing gas den-
sity [46].

In the high-density region the gas density is compara-
ble to that of the liquid (we recall that the critical density
of neon is N, = 144.3 x 102°cm™3 and its critical tem-
perature is T, = 44.38 K [43]), and it is assumed that
hydrodynamics can be used to describe the ionic motion.
The hydrodynamic picture is based on the assumption
that the mean free path of the atoms of the liquid is
smaller than the dimensions of the foreign object moving
through it. If we treat the neon atoms as hard spheres of
diameter orj, the Ne-Ne cross section can be estimated
as

QNeNe = (oLy)? ~ 24 A2 (18)

which is consistent with the neon cross section deduced
from viscosity data [31], and then the mean free path
becomes

1

= for N = 240 x 102 cm 3
NQNe-Ne

INe =174

(19)

to be compared with an average interatomic spacing d ~
3.5 A. Moreover, molecular dynamics calculations [47)
have shown that the strong attractive force exerted by
the ion on the polarizable particles of the fluid leads to
the formation of a tightly packed solvation shell around
the ion. Assuming that this shell consists of one complete
layer of neon atoms clustered around the ion, the outer
radius R of this complex can be estimated to be

R~ Y(0p,- +oL3) =4.36A. (20)

It therefore appears that the use of hydrodynamics at
the highest densities of our experiment is correct, while
it seems not justified at the low densities, where the mean
free path of the neon atoms is much larger (for instance,
Ine = 27A for N =15.6 x 102°cm™3).

The hydrodynamic formula for the mobility of a sphere
of radius R is the well-known Stokes formula [48]

_ [
" 6émnR

7 (21)
where 7 is the fluid viscosity and the constant 67 arises
from the so-called “stick” boundary conditions which ap-
ply in the case of an ion. It is well known [49] that
Stokes’s law makes nearly correct quantitative predic-
tions even in the case of microscopic objects, which are
not large compared to the fluid atoms nor are they much
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more massive. Henceforth, we will assume Stokes’s law
as granted.

Stokes’s formula applies if the nonlinear terms in the
Navier-Stokes equation can be dropped, i.e., for small
Reynolds numbers, R < 1. In our case R can be calcu-
lated according to the following formula:

pLER
n

where p and 7 are the mass density and viscosity of
neon, p is the ion mobility, E is the applied electric
field, and R is the ion (or cluster) radius. In the worst
case during our experiment R ~ 3 x 1072 << 1. So,
the conditions for the applicability of the Stokes law are
satisfied.

In Fig. 6 we show un as a function of N. 75 at
T = 45 K has been interpolated from experimental data
reported in the literature [50]. From Stokes’s law, Eq.
(21), the product un should be a constant for a constant
hydrodynamic radius R at high density. On the con-
trary, pun at low density should be inversely proportional
to N, since in the kinetic regime the viscosity is related
to the neon mean free path according to the formula [51]

R = (22)

N = 3N MncOnelne (23)

and does not depend on N.

From this figure it is clear that (i) at the lowest den-
sity the kinetic regime has not been completely attained
yet; and (ii) in the high-density region the assumption
of a constant hydrodynamic radius is incompatible with
the experimental results. Nonetheless, the validity of the
Stokes formula'could be preserved by assuming that the
hydrodynamic radius of the ion depends on the density.
Thus, the mobility data can be used to calculate this
density-dependent radius. In order to take into account
the fact that our data cover the transition region from
the kinetic to the hydrodynamic region, we need an in-
terpolation formula connecting the ideal gas and ideal
liquid limits of ion transport. The first attempt is due to
Cunningham [52,53], who modified the Stokes law into
the following formula:

50
b .
7 .
> .
<]
o 20
T . s
S . .
= . s
< 10¢ e ..
10 100
N (10% cm™)

FIG. 6. The viscosity-mobility product un as a function of
the gas density. At low density un should possess the slope
of the straight line shown if the kinetic regime were obeyed.
At high density, un should be constant if the hydrodynamic
radius of the ion were constant.

e £
b= R (1+AR) (24)
where A is a constant and £ is the mean free path
between collisions. In normal liquids £ « R/A, and
Stokes’s law is recovered. Equation (24) has been modi-
fied so as to successfully treat the transport of localized
electrons in liquid helium [54], in high-density neon gas
[36], and in some liquid hydrocarbons [55]. The constant
A was taken as % and the kinetic expression for £ was
used:
3n

= —" 25
¢ M,o.N (25)

By substituting this expression into Eq. (24) we get

e 977
= 1 : 26
H st( + 4NR(27rM,kBT)1/2) (26)

At low density, where £>> R, Eq. (26) becomes

. 3e T 1/2 1 (27)
=8N \2M, ksT TR?

which is the rigorous result of the kinetic theory for the
mobility of hard spheres of radius R and cross sections
Qus = wR?. However, in Egs. (25) and (26) we have
used M, = Mye, since we have seen that ions are very
likely to be clustered.

In Fig. 7 we plot the correction term 3£/2R as a func-
tion of N, computed by using Eq. (25) for ¢, and assum-
ing R = (1/2)(20L; +00,) = 4.36 A, which corresponds
to the hard-sphere radius of an Oy~ ion surrounded by
one complete solvation shell of Ne atoms. It can be noted
that this correction term increases with density at high
densities and this corresponds to an unrealistic increase
with density of the mean free path as computed by means
of a formula, Eq. (25), that holds true only in the kinetic
regime [51]. It seems therefore more plausible to compute
the mean free path ¢ according to the classical relation

1
L= NO (28)

where @ is the total cross section. We have used here

31/2R

o Tl s
o .
. .
05 | o .. L e
Dt ° o %% ee aee s
° oo
%0 oos
3 5 @000 © 00 c

0 S0 100 150 200 250
N(lOzocm"])
FIG. 7. Kinetic correction 3¢/2R in the Stokes-

Cunningham formula as a function of the gas density. Closed
points: Eq. (25); open points: Eq. (28).
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the hard-sphere kinetic cross section Q = wo? ~ 110 A2,
where o = (oLj + 00,)/2 + o3 ~ 5.74 A pertains to
the binary collision of a clustered ion with a Ne atom.
Equation (28) is again a kinetic expression (that gives
the correct expression for p at low density), but it does
not predict any increase of //R with N at high density,
as shown in Fig. 7.
By inserting Eq. (28) into Eq. (24) we get

e 3
K= 6mR (1 + 2NQR) ' (29)

We can now use the experimental mobility data to com-
pute the (semi)hydrodynamical radius R of the ion.
In Fig. 8 we report R computed according to Egs.
(21), (26), and (29) as a function of the gas density
N. All the three curves show a similar density depen-
dence. The computed radius increases rapidly with N
at low to medium density. It shows a maximum close to
N =130 x 102°cm—3, and then decreases with increas-
ing N, approximately saturating to a constant value for
large N.

At very high density, where a “pure” hydrodynamic
regime is to be expected, Stokes’s formula Eq. (21) gives
a radius R close to the value 4.36 A corresponding to
a complete tightly packed solvation shell of neon atoms
around the ion. Also Eq. (29) gives a radius close to
4.36 A, as is to be expected since the correction term
3/(2NQR) is quite small. On the other hand, Eq. (26)
fails to predict a reasonable value for R at large density
because of the unrealistic behavior of the correction term
computed with the aid of Eq. (25).

From Fig. 8 we can also note immediately the inade-
quacy of the pure hydrodynamic Stokes formula at low
density, where it predicts a radius close to zero at zero
density, as well as the inadequacy of the semihydrody-
namic formula Eq. (26), which predicts an inconsistently
large radius at low density. On the contrary, the semi-
hydrodynamic formula Eq. (29) predicts a low-density
radius self-consistently close to the value o = 5.74 A
used to compute the hard-sphere cross section for the
collision of the clustered ion off a neon atom. It seems
therefore that the semihydrodynamic formula Eq. (29)
can be safely used as an interpolation between the kinetic
and hydrodynamic regimes.

In any case, whatever formula is used [Egs. (21), (26),
or (29)], the computed semihydrodynamic radius shows
the general feature of a maximum at a density close
to, but smaller than, the critical one. In order to ex-
plain these observations, at least semiquantitatively, we
refer to the electrostriction model originally developed
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FIG. 8. Semihydrodynamic radius of the ion as a function
of the gas density. Closed squares: pure Stokes calculated
from Eq. (21); closed circles: Stokes-Cunningham calculated
from Eq. (26); open circles: modified Stokes-Cunningham
calculated from Eq. (29). It has to be noted that Eq. (21)
and Eq. (29) give a radius that at high density tends to
the value 4.36 A of one solvation shell of neon atoms tightly
packed around the ion.

by Atkins [56] for ions in liquid helium. This model,
which treats the fluid as a continuum, is based on the
fact that when a polarizable fluid is distributed through-
out a nonuniform electric field, its density and pressure
increase with increasing field. An ion in the gas produces
a very strong electric field in its proximity and the mean
gas density steadily increases as the ion is approached.
Moreover, since the gas viscosity is an increasing func-
tion of density, electrostriction produces an increase of
the viscous drag that would be normally exerted on a
neutral body of the same size of the ion. The hydrody-
namic problem to be solved is the determination of the
drag force on a spherical particle of radius R and ve-
locity vp = pE, which acts on the surrounding gas so
as to maintain a given radial density and viscosity varia-
tion N(r) and n(r). This goal has been accomplished
by Ostermeier and Schwarz [57] (OS) who solved the
Navier-Stokes equations, supplemented with the continu-
ity equation of the fluid, allowing for a spatial dependence
of density and viscosity. The result for the mobility can
be expressed in terms of a Stokes-like formula as

e

=" 30
67N RF (30)

m
where 7., is the viscosity of the unperturbed fluid. F is
a correction term which depends on the gas through 7.
and N, (the density of the unperturbed fluid), as well
as on the charge-fluid interaction through the shape of
the density and viscosity disturbances. According to OS,
F can be calculated by solving the following equation:

" ()
P o'
__y2_:| f/

pn

+
PN

’ N\ 2 " ]
9pF
6&_4y(&) o 2P - 22F o (31)
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where y = R/r is the inverse of the distance from the
ion center in units of the bare ion radius. Primes indi-
cate differentiation with respect to y and F' is expressed
in units of 67N Rvp. f(y) is the function describing
the velocity profile of the gas in the forward direction in
front of the moving particle and is subjected to the usual
boundary conditions that the fluid velocity at the ion
equals the ion velocity (no-slip condition) and that the
fluid at large distance is at rest. The correction term F
can be computed by Taylor-expanding f around y =1
and substituting it into Eq. (31). If there are m terms
in the series expansion of f, one gets a set of m+1 linear
algebraic equations for the coefficients of the expansion
and for F', which can be solved with usual matrix inver-
sion methods [41].

In order to solve Eq. (31) we need to calculate the den-
sity and viscosity profiles as determined by electrostric-
tion. According to Atkins [56], the gas is treated as
a classical continuum whose relative dielectric constant
K(N) is related to the gas density by the usual Clausius-
Mossotti formula

K—l_Na
K+2 3¢

(32)

where the atomic polarizability a and N are expressed
in mks units.

This classical approximation should be fairly good, ex-
cept in close proximity of the ion. Nonetheless, as pointed
out by OS, the most important effects are those due to
density and viscosity disturbances which extend farther
out from the ion into the fluid. Assuming that the system
is in thermodynamic equilibrium, the chemical potential
of the gas atoms must be uniform throughout the whole
system. Therefore, if go(7T, P) is the chemical potential
of the gas atoms in the unperturbed region, in the region
where the electric field generated by the ion is E; the
chemical potential must be modified so as to yield

1P-E;

9(7‘):90—5 N

(33)

where P is the polarization of the medium [58]. Since g
and T are constant throughout the fluid (dg =0, dT =
0), differentiation of Eq. (33) yields

dP 1 (0P P . dE;
o (=) g =22
v = (av), 2 = % @

where P is the fluid pressure. Upon integration we get

N(r)

/ % (%)szv = 1aE2(r) (35)

oo

where E;(r) is the electric field of the ion at a dis-
tance r. (Strictly speaking, we should use here the local
field at the atom, but the factor 3/[2 + K (V)] is practi-
cally equal to 1 even at the highest density.) By sub-
stituting in Eq. (35) for E;(r) its actual expression
Ei(r) = —e/[AneoK(N)r2?] and collecting all density-
dependent terms we obtain

6N, N) = KWP [ 1 (5%). 4N = G g
Noo
(36)

The left-hand side of Eq. (36) can be easily evaluated as
a function of N and N, since the equation of state of
neon is known [43] and the density profile is then deter-
mined by inverting Eq. (36) to yield

r= E (Meo)%e(jv’ Nw)}w. (37)

In Fig. 9 we report some of the density profiles obtained
and in Fig. 10 the corresponding viscosity profiles com-
puted by exploiting the known density dependence of 7.
We must point out, however, that the uncertainty in the
viscosity is quite large since there are no measurements at
precisely the same temperature and density of our experi-
ment and we had to interpolate and extrapolate available
literature data [50].

The effect of electrostriction is to enhance the local
density around the ion. For densities of the unperturbed
gas lower than the critical one, there is a spatial region
where the local density passes through the critical value
and the corresponding profile is very steep as a conse-
quence of the large compressibility of the gas. The den-
sity profiles become less and less steep as the unperturbed
gas density increases, and, eventually, for densities of the
unperturbed gas larger than the critical one the density
profiles are very gentle, since the gas compressibility is
no longer as large as before.

From Fig. 9 we can also note that for small distances
all profiles converge to a single curve. This means that
close to the ion the local density is fairly independent
of the mean gas density. Moreover, we observe that the
spatial extent of the density disturbance increases with
increasing the unperturbed gas density up to the critical
value, when it reaches its maximum value because of the
large gas compressibility. Then, for larger gas densities
the spatial extent of the density profiles decreases.

These density and viscosity profiles can be now in-

400
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FIG. 9. Profiles of the local density around the ion cal-
culated according to the Atkins electrostriction model. The
densities of the unperturbed gas are (from bottom to top)
N = (10, 25, 50, 75, 100, 120, 150, 200, 250) x 10%° cm™>.
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FIG. 10. Profiles of the local viscosity around the ion cal-
culated according to the Atkins electrostriction model. The

densities of the unperturbed gas are (from bottom to top)
N = (10, 25, 50, 75, 100, 120, 150, 200, 250) x 10%° cm™3.

serted into Eq. (31) and the correction factor F' can
be calculated. We have to point out that the density
profiles calculated as previously described do not allow
for the short-range repulsive part of the ion-atom inter-
action. To take this into account, the profiles are cut
off at a given hard-sphere radius of the bare ion so that
N(r < R) = 0. As a result, the correction factor F
depends on the choice of this value.

In Fig. 11 we show the F values calculated for some
values of the bare ion hard-sphere radius R. For all R
F has the same general behavior showing a maximum
at a density close to, but smaller than the critical one in
agreement with the semihydrodynamic radius calculated
from the experimental data. The correction factor F' de-
creases with increasing cutoff radius, as is to be expected
since for large distances the local density tends towards
the unperturbed one, thus canceling out the effects of
electrostriction. We have to point out that the calcula-
tions were not performed for densities lower than those
shown in Fig. 11 because the steepness of the relative
density profiles was so large as to give numerical prob-
lems when solving Eq. (31).

Finally, in Fig. 12 we compare the experimental poN
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FIG. 11. Density dependence of the correction factor F
calculated according to the Ostermeier-Schwarz model by
solving the Navier-Stokes equation with spatially dependent
density and viscosity. The cutoff hard-sphere radii are (from
top to bottom) R = (3.2, 4.0, 5.0) A, respectively.
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FIG. 12. Zero-field density-normalized ion mobility as a
function of the gas density. Closed circles: experimental data;
open circles: prediction of the OS theory with a hard-sphere
cutoff radius R = 4 A; open squares: prediction of the pure
Stokes’ formula with the same R.

data with the prediction of the electrostriction theory
Eq. (30) as well as with the prediction of the pure Stokes
formula which neglects electrostriction, Eq. (21). The re-
sults obtained by neglecting electrostriction differ largely
from the experimental data. On the contrary, the results
obtained by using electrostriction are in better agreement
with the experiment showing deviations within 40%.

We believe that the residual discrepancies might be at-
tributed to several reasons. Density profiles as steep as
those reported in Fig. 9 for densities lower than the criti-
cal one are not very realistic and are not compatible with
the assumption of local thermodynamic equilibrium. It
is also questionable if the continuum approximation can
be adopted at a distance from the ion comparable with
the atomic diameter, especially when density is so rapidly
varying. From Fig. 12 we see that the largest discrepancy
among theory and experiment occurs around the critical
density and below it. At lower densities the mean free
path of the ion is relatively bigger than at larger densi-
ties and the ion passes through the gas without a fully
developed density profile. The effective density profile
should be then obtained by averaging the calculated pro-
files over a mean free path, thus yielding a less steep but
farther extending density disturbance which results in a
larger F' factor. On the other side of the density range
the ion mean free path is much smaller than one atomic
diameter and the effective density profile should be very
close to the computed ones. The agreement between the-
ory and experiment in this region is better, indeed. The
idea of averaging over a distance of the order of the ion
mean free path is supported also by the following argu-
ments. The buildup of the density profiles in response to
the disturbance produced in the gas by the ion can fully
develop only if the ion velocity is smaller than the sound
velocity in the gas, in order that the fluid can react read-
ily to the presence of the moving ion. The ion velocity
to be considered is the thermal one

1/2
5= (ik]"}T) (38)
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where M. is the effective ion mass. According to [47],
approximately ten atoms are tightly bound to the ion so
that M, ~ Mo, + 10Mye. This yields o ~ 64 m/s. The
sound velocity in neon, ¢, can be estimated from the
equation of state by means of the usual formula

1/2
c= (&) (39)
MNeN XT

where N4 is Avogadro’s number, v ~ g, and xr is the
isothermal compressibility [59]. We get ¢ ~ 154 m/s
for N =15 x 102°cm™3, ¢ ~ 19 m/s for N = 150 x
102°cm™3, and ¢ ~ 85 m/s for N = 240 x 102°cm™3.
We see that the sound velocity is always comparable with
the ionic thermal velocity and close to the critical density
it is even smaller than that. Thus the gas has no time to

react instantaneously to the passage of the charge.
Finally, we want to recall here briefly the existence
of a theory for the ionic mobility in liquids, proposed
by Davis, Rice, and Meyer [60] as an extension of the
Rice-Allnatt theory [61] for transport processes in sim-

ple liquids to the mobility case. This theory is essentially
based on the knowledge of the ion—neutral-atom pair cor-
relation function and has been successfully exploited to
calculate the mobility of positive ions in liquid Ar, Kr,
and Xe [60,62]. The Atkins electrostriction model was
used to calculate the long-range part of the pair correla-
tion function as
N(r) — Neo

gp(r) Noo * (40)
This is just what we have done in this work. The draw-
back of this theory, however, is the lack of knowledge
of the short-range part of the correlation function of the
ion—neutral-species system, which was either calculated
numerically for a Lennard-Jones fluid modeling the ac-
tual system, or was assumed to be equal to the pair cor-
relation function of the solvent. On the contrary, in the
OS scheme all quantities are, in principle, known, and
using this approach we have been able to numerically re-
produce the mobility of positive ions in liquid Ar, Kr,
and Xe without any adjustable parameter [63].
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